Control of

 ultracold molecular gases by optical shieldingThétim

Charbel KARAM

Laboratoire Aimé Cotton
Team: THEOMOL
Supervisors: Olivier Dulieu \& Nadia Bouloufa

Goal :

Obtain a dense gas ($10^{12}-10^{15} \mathrm{~cm}^{-3}$) of ultracold molecules ($\ll 1 \mathrm{mK}$) in their absolute ground state.

Reach quantum degeneracy

System :

Bi-alkali-metal molecules...
Strong permanent electric dipole moment in ground state

Strong long-range interactions

+ Manipulation by external electric field.

Experimentally:

Ultracold samples of NaRb (Hong-Kong)
NaK (Hannover, Munich, Dalian, MIT)
RbCs (Durham, Innsbruck)
KRb (JILA, MIT)
LiNa (MIT)

Observed losses:

PRL 116, 205303 (2016) - Collab: Theomol -Hong-Kong

Problem:

The number of ultracold molecules in the sample decreases for unknown reasons.

Causes are still unknown:

- Reactivity?
- Sticky collisions?
- Photo-excitation of the tetramer complex by the trapping light?

Solution: Opticall Shielding

Control the collisions

By Optical Shielding

Engineering the long-range interactions between the molecules to prevent their collisions and suppress the losses.

How?

Optical field with a frequency blue-detuned by respect to a specific molecular transition

Case 1: two ground state molecules

Case 2: one of the two molecules is electronically excited

What about the long-
range interaction
between them?

> Could it generate
> a repulsive
> channel?

Long-range potential energy curves: (field-free)

$$
\begin{aligned}
& \text { Studied collision : } \\
& X^{1} \Sigma^{+}\left(\mathrm{v}_{\mathrm{X}}=0, \mathrm{j}_{\mathrm{X}}\right)+X^{1} \Sigma^{+}\left(\mathrm{v}_{\mathrm{X}}=0, \mathrm{j}_{\mathrm{X}}\right) \\
& X^{1} \Sigma^{+}\left(\mathrm{v}_{\mathrm{X}}=0, \mathrm{j}_{\mathrm{X}}\right)+b^{3} \Pi\left(\mathrm{v}_{\mathrm{b}}=0, \mathrm{j}_{\mathrm{b}}\right)
\end{aligned}
$$

> Notations:
> $\mathrm{X}=$ Ground electronic state.
> $\mathrm{b}=$ Excited electronic state.
> $\mathrm{v}_{\mathrm{X} / \mathrm{b}}=$ Vibrational state.
> $\mathrm{j}_{\mathrm{X} / \mathrm{b}}=$ Rotational state.
> $\mathrm{J} \quad=$ Total angular momentum of the system.

The representation in the basis of molecular states dressed by light: Adding the energy of the photon

The representation in the basis of molecular states dressed by light: Adding interaction with the photon

Previously calculated for ${ }^{23} \mathrm{Na}{ }^{87} \mathrm{Rb}$

Phys. Rev. Lett. 125 (2020) T. Xie, M. Lepers, R. Vexiau, A. Orbán, O. Dulieu, N. Bouloufa-Maafa

Calculation of rates:

- Elastic collisions $k_{e l}$.
- Inelastic collisions $k_{i n}$.
- Reactive collisions $k_{r e}$.

Efficiency of the shielding $k_{e l} \gg k_{i n}, k_{r e}$

