

RIS-SACLA

DES SCIENCES

FACULTÉ

D'ORSAY

Charbel KARAM

Laboratoire Aimé Cotton Team: THEOMOL Supervisors: Olivier Dulieu & Nadia Bouloufa

<u>Goal :</u>

Obtain a dense gas (10¹²-10¹⁵ cm⁻³) of ultracold molecules (<<1mK) in their absolute ground state.

Reach quantum degeneracy

System :

Bi-alkali-metal molecules...

Strong permanent electric dipole moment in ground state

Strong long-range interactions

+ Manipulation by external electric field.

6.941

Li

LITHIUM

11 22.990

Na

SODIUM

19 39.098

K

37 85.468

Rb

RUBIDIUM

55 132.91

CS

Experimentally:

Ultracold samples of NaRb (Hong-Kong) NaK (Hannover, Munich, Dalian, MIT) RbCs (Durham, Innsbruck) KRb (JILA, MIT) LiNa (MIT)

Observed losses:

PRL 116, 205303 (2016) - Collab: Theomol -Hong-Kong

Problem:

The number of ultracold molecules in the sample decreases for unknown reasons.

Causes are still unknown:

- Reactivity ?
- Sticky collisions?

- Photo-excitation of the tetramer complex by the trapping light?

Solution: Optical Shielding

Control the collisions

By Optical Shielding

Engineering the long-range interactions between the molecules to prevent their collisions and suppress the losses.

How?

Optical field with a frequency blue-detuned by respect to a specific molecular transition

Case 1: two ground state molecules

Case 2: one of the two molecules is electronically excited

The representation in the basis of molecular states dressed by light: Adding the energy of the photon

The representation in the basis of molecular states dressed by light: Adding interaction with the photon

Previously calculated for ²³Na ⁸⁷Rb

Phys. Rev. Lett. 125 (2020) T. Xie, M. Lepers, R. Vexiau, A. Orbán, O. Dulieu, N. Bouloufa-Maafa

