Observation of universal Hall Response in strongly interacting fermions

Tianwei Zhou1, Daniele Tusi2, Lorenzo Franchi1, Michele Filippone3, Cecile Repellin4, Sebastian Greschner3, Jacopo Parravicini1, Massimo Inguscio2,5,6, Giacomo Cappellini2,6, Jacopo Catani2,6, Thierry Giamarchi3, and Leonardo Fallani1,2,6,7

1Department of Physics and Astronomy, University of Florence, I-50019 Sesto Fiorentino, Italy – Italy
2European Laboratory for Non-Linear Spectroscopy (LENS), I-50019 Sesto Fiorentino, Italy – Italy
3Department of Quantum Matter Physics, University of Geneva, CH-1211 Geneva, Switzerland – Switzerland
4Grenoble Alpes University, CNRS, LPMMC, F-38000 Grenoble, France – Grenoble Alpes University, CNRS, LPMMC, F-38000 Grenoble, France – France
5Department of Engineering, Campus Bio-Medico University of Rome, I-00128 Roma, Italy – Italy
6Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), Sezione di Sesto Fiorentino, I-50019 Sesto Fiorentino, Italy – Italy
7Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, I-50019 Sesto Fiorentino, Italy – Italy

Abstract

The Hall effect, which originates from the motion of charged particles in a magnetic field, has profound consequences for the description and characterization of materials, extending far beyond the original context of condensed matter physics. Although the Hall effect for non-interacting particles is well understood also in the quantum regime, understanding the Hall effect in interacting systems still represents a fundamental challenge even in the classical, weak-field case. Here we directly observe how the Hall response \cite{greschner2019, filippone2019} builds up in an interacting quantum system by exploiting controllable quench dynamics in an atomic quantum simulator. By tracking the motion of ultracold fermions in a synthetic ladder \cite{mancini2015}, we measure the Hall response depending on synthetic tunneling and atomic interactions, unveiling a universal behavior in the strongly interacting limit and exhibiting a clear agreement with theoretical analyses. We expect our findings to open new directions towards strongly correlated topological phases such as fractional quantum Hall states and spin liquids. Reference

\cite{greschner2019, filippone2019, mancini2015}

"Speaker"