Universal scaling of spin mixing dynamics in a strongly interacting one-dimensional Fermi gas

Giovanni Pecci^{*1}, Patrizia Vignolo², and Anna Minguzzi³

¹Laboratoire de Physique et Modélisation des Milieux Condensés (LPMMC) – Université Grenoble Alpes, CNRS : UMR5943 – France

²Institut de Physique de Nice (INPHYNI) – CNRS : UMR7010 – Site INLN, 1361 route des Lucioles, Sophia Antipolis F-06560 Valbonne, FRANCE, France

³Laboratoire de Physique et Modélisation des Milieux Condensés (LPMMC) – Université Grenoble Alpes, CNRS : UMR5493 – France

Abstract

We study the spin-mixing dynamics of a one-dimensional strongly repulsive Fermi gas under harmonic confinement. By employing a mapping onto an inhomogeneous isotropic Heisenberg model and the symmetries under particle exchange, we follow the dynamics till very long times. Starting from an initial spin-separated state, we observe superdiffusion, spin-dipolar large amplitude oscillations and thermalization. We report a universal scaling of the oscillations with particle number N¹/4, implying a slow-down of the motion and the decrease of the zero-temperature spin drag coefficient as the particle number grows. We study the spin-mixing dynamics of a one-dimensional strongly repulsive Fermi gas under harmonic confinement. By employing a mapping onto an inhomogeneous isotropic Heisenberg model and the symmetries under particle exchange, we follow the dynamics till very long times. Starting from an initial spin-separated state, we observe superdiffusion, spin-dipolar large amplitude oscillations and thermalization. We report a universal scaling of the oscillations with particle number N¹/4, implying a slow-down of the motion and the decrease of the zero-temperature spin drag coefficient as the particle number scaling of the oscillations

^{*}Speaker