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GBSTRACT: \

We study experimentally and numerically the superradiant dynamics of a dilute cold atomic clouds driven by a weak laser beam (linear-optics regime).
Linear-optics superradiance has already been observed in our team and our goal now is to show, numerically and experimentally, a non-intuitive
feature, which is that the superradiant decay rate can be made larger by smoothing the laser switch-off. In other words, the collective atomic decay rate
is a non-monotonous function of the switch-off duration of the driving laser: the maximum decay rate is not obtained for the fastest laser switch-off.
This study led us to a better understanding on what is the physical nature of superradiance in the linear-optics regime.
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rSU PERRADIANCE: \

Superradiance generally refers to the accelerated radiation rate of a collection of excited atoms due to the collective interaction of the sample with light and the vacuum
reservoir [1]. However superradiance is still observable in the linear-optics regime, when there is only one quantum of excitation shared among the atoms [2,3]. How can we
understand superradiance in this case?

Recent studies showed that we could describe superradiance with an “optical” model called linear-dispersion theory [4,5]. In this model, based on a single scattering event
Cmbedded in an effective medium, we can interpret superradiance as a dispersion effect associated with the scattering and propagation through the sample. )
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Macroscopic description: The linear dispersion model
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What do we want to do ?

Testing the model and show experimentaly a non intuitive prediction of it
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Experimental part
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