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ABSTRACT: 

We study experimentally and numerically the superradiant dynamics of a dilute cold atomic clouds driven by a weak laser beam (linear-optics regime). 
Linear-optics superradiance has already been observed in our team and our goal now is to show, numerically and experimentally, a non-intuitive 
feature, which is that the superradiant decay rate can be made larger by smoothing the laser switch-off. In other words, the collective atomic decay rate 
is a non-monotonous function of the switch-off duration of the driving laser: the maximum decay rate is not obtained for the fastest laser switch-off. 
This study led us to a better understanding on what is the physical nature of superradiance in the linear-optics regime.

[1] R. H. Dicke, Phys. Rev. 93, 99 (1954).

[2] M. O. Scully, A. A. Svidzinsky, Science 325, 1510 (2009).

[3] M. O. Araújo, I. Kresic, R. Kaiser, W. Guerin, Phys. Rev. Lett. 117, 073002 (2016).

[4] A. D. Kuraptsev, I. M. Sokolov, M. D. Havey, Phys. Rev. A 96, 023830 (3017).

[5] P. Weiss, A. Cipris, R. Kaiser, I. M. Sokolov, W. Guerin, Phys. Rev. A 103, 023702 (2021).



• The main ideas of the experiment

• Difference between one and many atoms
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This part interests us
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Natural decay • Why is it different ?
• What is the nature of the effect ?
• How to amplified or disamplified super-radiance ?

Hypothesis

 Linear-optics regime 
→ small laser amplitude 
→ small saturation parameter

 Observation at 45°
→ off axis from the probe laser    

beam
 Extended and dilute system 

→ wavelength ≪ interatomic        
distances & cloud radius

SUPERRADIANCE:

Superradiance generally refers to the accelerated radiation rate of a collection of excited atoms due to the collective interaction of the sample with light and the vacuum 
reservoir [1]. However superradiance is still observable in the linear-optics regime, when there is only one quantum of excitation shared among the atoms [2,3]. How can we 
understand superradiance in this case? 
Recent studies showed that we could describe superradiance with an “optical” model called linear-dispersion theory [4,5]. In this model, based on a single scattering event 
embedded in an effective medium, we can interpret superradiance as a dispersion effect associated with the scattering and propagation through the sample. 



Macroscopic description: The linear dispersion model
• Resonant optical thickness 𝒃𝟎
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• Polarisability
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What do we want to do ?
• Testing the model and show experimentaly a non intuitive prediction of it

Increasing super-radiance by 
decreasing the sharpness of 

the laser extinction
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Slow laser extinction

↑
Fast laser extinction

 𝜞𝑵 = 𝜞𝒍𝒂𝒔𝒆𝒓

Non intuitive part
Enhanced superradiance 
bump



𝟏 𝑨𝒕𝒐𝒎𝒃𝟎 = 𝟐𝟎

↑
Fast laser extinction

↑
Slow laser extinction
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Slow limit

𝛤௟௔௦௘௥ ~ ∆

Intermediate regime: the 
output follow the input 
until the limit  𝛤௟௔௦௘௥~∆

𝛤௟௔௦௘௥ ≫ ∆
The many atoms are filtering the 
resonant light ⇒ It attenuates the 

distortion effect coming from 𝛂

The output will follow more or less
the input again (at early time) 
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Experimental part

EOM
Cold atoms cloud

Scattered lightGenerating the laser impulsion
with a limitation of 2ns ( ଵ

௰బ
= 26𝑛𝑠)

Sensible to thermal fluctuations,
need to lock it

HPM (hybrid 
photomultiplier)

AOM

Cut the remaining signal coming
from the EOM imperfections

TDC (Time to 
digital converter)

Make an histogram of the photons
time arrival 

laser

Arbitrary Fonction
generator

AOM

Double pass AOM, 
tune ∆

𝑏଴ : 
Blue = 6 
Red = 11
Yelow = 27

↑
Slow laser extinction

↑
Fast laser extinction

Subtraction of the
hot vapor signal

Fitted cold signal
Provisional result

(More data are currently being acquired)

∆= −𝟖𝛤


