Spin squeezing in quantum simulators

<u>Tommaso Comparin</u>, Fabio Mezzacapo, Tommaso Roscilde (ENS de Lyon) Robert-de-Saint-Vincent, Vernac, Laburthe-Tolra (LPL, Univ. Sorbonne Paris Nord)

Spin squeezing: A form of multipartite entanglement, defined for the collective spin:

$$egin{aligned} oldsymbol{\xi}_R^2 &= rac{N \min_\perp \operatorname{Var}[J^\perp]}{\left| \langle \mathbf{J}
angle
ight|^2}, \qquad \mathbf{J} = \sum_{i=1}^N \end{aligned}$$

Squeezed state ($\xi_R^2 < 1$):

- Reduced spin fluctuations in one direction orthogonal to $\langle {f J}
 angle;$
- Entangled state ($\xi_R^2 < 1/k$ implies entanglement depth k+1);
- Metrological gain in phase estimation via Ramsey interferometry.

Paradigmatic strategy: One-axis-twisting (OAT) model. Unitary dynamics induced by $H_{\text{OAT}} = \chi (J^z)^2$ on the state $|\text{CSS}\rangle_x = \bigotimes_{i=1}^N |\uparrow_x\rangle_i$ generates optimal squeezing scaling as $\xi_R^2 \propto 1/N^{2/3}$.

How to generate squeezing with realistic models for quantum simulators?

[Kitagawa&Ueda, PRA 1993]

 \mathbf{S}_i

Summary

Quantum simulators give access to scalable spin squeezing.

1. For sufficiently long-range α -XX models (e.g. Rydberg atoms in two dimensions, with dipolar couplings), quench dynamics from $|CSS\rangle_x$ (polarized product state) yields

$$\xi_R^2 \propto 1/N^{2/3}, \qquad t \propto N^{1/3}.$$

2. For systems that spontaneous break a continuous symmetry (e.g. short-range XXZ model in optical-lattice Mott insulators), quasi-adiabatic preparation towards small field yields

$$\xi_R^2 \propto 1/N^{1/2}, \qquad t \propto N.$$

References:

- Comparin, Mezzacapo, Roscilde, "Universal spin squeezing from the tower of states of U(1)-symmetric spin Hamiltonians", <u>arXiv (2021)</u>.

- Roscilde, Mezzacapo, Comparin, "Spin squeezing from bilinear spin-spin interactions: two simple theorems", <u>Phys. Rev. A 104,</u> <u>L040601 (2021)</u>.
- Comparin, Mezzacapo, Robert-de-Saint-Vincent, Vernac, Laburthe-Tolra, Roscilde, "Scalable spin squeezing from spontaneous breaking of a continuous symmetry" (in preparation).

Quench dynamics for α -XX models

$$H=-\sum\limits_{i< j}rac{\mathcal{J}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}
ight|^{lpha}}igg(S_{i}^{x}S_{j}^{x}+S_{i}^{y}S_{j}^{y}igg)$$

Evolve an initially x-polarized state with α -XX Hamiltonian

(dynamics simulated via time-dependent Variational Monte Carlo and Jastrow Ansatz).

Optimal-squeezing at finite time, scaling as $\,\xi_R^2 \propto 1/N^{
u}$

(1) OAT model at α =0; (2) OAT scaling up to finite α ; (3) no scaling for shorter-ranged couplings.

Comparin, Mezzacapo, Roscilde, "Universal spin squeezing from the tower of states of U(1)-symmetric spin Hamiltonians", arXiv 2021.

Anderson Tower of States (ToS)

A set of energy eigenstates with

 $E \propto (J^z)^2, \quad E \propto 1/N.$

Signature of symmetry breaking in finite-size spectra [Anderson, PR 1952].

Also present for α -XX models, when breaking U(1) symmetry.

Anomalously large total spin + large overlap with initial (CSS) state: quantum scars.

Short-time dynamics remains in sector of max total spin, where it maps onto an OAT model:

$$H\simeq \chi^{(lpha)}(J^z)^2$$

Consequence: robustness of short-time squeezing generation.

Squeezing from (quasi)-adiabatic dynamics for symmetry-breaking models

Spontaneous symmetry breaking (SSB) of continuous symmetry [e.g. U(1) for the XXZ model] \rightarrow Anderson Tower of State (ToS), with energies scaling as 1/N.

<u>Strategy</u>: add a strong symmetry-breaking field Ω , and decrease it adiabatically towards $\Omega \sim 1/N$:

- 1. Energy gap at small fields is $\propto \Omega^{1/2}$.
- 2. SSB: Microscopic field ($\propto 1/N$) mixes the ToS and induces macroscopic magnetization.
- 3. Fluctuations of J^z (symmetry generator) are suppressed, and they vanish for $\Omega = 0$

 \rightarrow <u>spin squeezing</u>, confirmed by ground state calculations

Comparin, Mezzacapo, Robert-de-Saint-Vincent, Vernac, Laburthe-Tolra, Roscilde, "Scalable spin squeezing from spontaneous breaking of a continuous symmetry" (in preparation)

QMC for n.n. XXZ model (see next slide)

Short-range XXZ model in two dimensions

Ground state Quantum Monte Carlo for n.n. XXZ model:

$$H = -J\sum\limits_{\langle i,j
angle}(S^x_iS^x_j+S^y_iS^y_y-\Delta S^z_iS^z_j) -\Omega\sum_iS^x_i$$

for $\Delta = 1$ (this slide) and $\Delta = 0$ (not shown).

- 1. No need for strict adiabaticity (see variational simulation of non-adiabatic ramp dynamics).
- 2. Minimal spin uncertainty (i.e. saturated Heisenberg-Robertson inequality)
 - \rightarrow rotation of the average collective spin around y (Ramsey interferometry) is the optimal measurement.

