Optimal control of the quantum state of a BEC in an optical lattice

N. Dupont, G. Chatelain, L. Gabardos, M. Arnal, J. Billy, B. Peaudecerf, D. Guéry-Odelin \& D. Sugny

LCAR

K
Laboratoire Collisions Agrégats Réactivité

$V(x, t)=\frac{s E_{L}}{2}\left[1-\cos \left(k_{L} x+\varphi(t)\right)\right]$
$k_{L}=\frac{2 \pi}{d}, E_{L}=\frac{\hbar^{2} k_{L}^{2}}{2 m}$

Imaging : momentum distribution atoms imaged after time-of-flight (TOF)

In the $q=0$ subspace, wavefunction:

$$
|\psi\rangle=\sum_{\ell \in \mathbb{Z}} c_{\ell}\left|\chi_{\ell}\right\rangle
$$

(expansion on plane waves $\chi_{\ell}(x) \propto e^{i \ell k_{L} x}$)

Initial wavefunction $=$ ground state quasimomentum $q=0$

Schrödinger equation :

$$
i \dot{c}_{\ell}=\ell^{2} c_{\ell}-\frac{s}{4}\left(e^{i \varphi(t)} c_{\ell-1}+e^{-i \varphi(t)} c_{\ell+1}\right) \Leftrightarrow i \dot{C}=\mathcal{M}(\varphi(t)) \times C
$$

We engineer the final state $C\left(t_{f}\right)$ using the control parameter $\varphi(t)$

Derivation of optimal control

. Choose a target state C_{T}, a figure of merit \mathcal{F} (fidelity)

$$
\text { e.g. } \mathcal{F}=\left|C_{T}^{\dagger} C\left(t_{f}\right)\right|^{2}
$$

- Optimize a discretized ramp φ_{n} :

Experimental sequence :

- precise lattice depth calibration*
- adiabatic lattice loading
- optimal phase control
- time-of-flight, imaging
*C. Cabrera-Gutiérrez et al., Phys. Rev. A 97, 043617 (2018)

Iterative optimization (gradient ascent)

For control $\left\{\varphi_{n}^{(k)}\right\}$:

- compute $C(t)$, and the adjoint $D(t)$:

$$
D\left(t_{f}\right)=\frac{\partial \mathcal{F}}{\partial C^{\dagger}\left(t_{f}\right)} \quad i \dot{D}=\mathcal{M}(\varphi(t)) \times D
$$

- build Pontryagin's Hamiltonian

$$
H_{\mathrm{P}}=\operatorname{Re}\left(D^{\dagger} \dot{C}\right)
$$

- Apply correction

$$
\varphi_{n}^{(k)} \rightarrow \varphi_{n}^{(k+1)}=\varphi_{n}^{(k)}+\epsilon \frac{\partial H_{\mathrm{P}}}{\partial \varphi_{n}^{(k)}}
$$

Experimental results

- States with equal weights/arbitrary weights on chosen momentum peaks

State $|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|\chi_{1}\right\rangle+e^{i \Delta \phi}\left|\chi_{-1}\right\rangle\right)$ with given relative phase $\Delta \phi$,
Phase measurement from subsequent evolution

Preparation of eigenstates

At quasimomentum $q=\tilde{q} k_{L}$, the $n^{\text {th }}$ Bloch function reads

$$
\left|\psi_{n, q}\right\rangle=\sum_{\ell \in \mathbb{Z}} c_{\ell}^{(n, q)}\left|\chi_{\ell+\tilde{q}}\right\rangle
$$

With $c_{\ell}^{(n, q)}$ solutions of the stationary Schrödinger equation

* We prepare eigenstates and superpositions thereof

Perspectives

* Preparation of states in a phase space of interest, e.g. Floquet mixed dynamical system (within a lattice cell)

* Full estimation of the prepared state: subsequent dynamics provide a ensemble of measurements for maximum likelihood reconstruction

A I Lvovsky
J. Opt. B, 6 S556

Target $\frac{1}{\sqrt{2}}\left(\left|\chi_{1}\right\rangle+i\left|\chi_{-1}\right\rangle\right)$

