

Measuring densities of cold atomic clouds smaller than the resolution limit.

A. Litvinov¹, P. Bataille¹, E. Maréchal^{1,2}, P.Pedri¹, O. Gorceix¹, M. Robert-de-Saint-Vincent¹ and B. Laburthe-Tolra¹.

¹Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord F-93430 Villetaneuse, France and LPL CNRS, UMR 7538 F-93430 Villetaneuse, France

² Laboratoire de Physique et d'Etude des Matériaux (LPEM), CNRS, Université Paris Sciences et Lettres

Experimental setup to study quantum magnetism on optical lattices

ULTRA COLD ⁸⁷Sr IN OPTICAL LATTICES STUDYING QUANTUM MAGNETISM BEYOND SPIN ¹/₂

Magnetism with Nuclear Spins

$$H_{Heis} = -J \sum_{\langle i,j \rangle} \vec{S}_i . \vec{S}_j$$

Fermi gas with 10 spin states 10^4 atoms at T/T_F ~ 0.2

(T ≈ 30 nK, T_F ≈ 150 nK)

P. Bataille and al. Phys. Rev. A 102, 013317 (2020)

Absorption imaging of objects smaller than the resolution limit

Analysis for objects smaller than the resolution limit

Our setup:

Core principle:

The <u>number of scattered photons</u> per <u>atom</u> depends on the optical thickness, *i.e.* <u>size</u>, of an atomic cloud.

→ Shadowing Effect

Distorsion of measured atomic density on unresolved (d) dimension along the short axis (b).

Analysis of the scattered photons

Phys. Rev. A 104, 033309

0x

0.2

10px

Verification

Longitudinal distorted profile (resolved dimension) $R_{ph}(j) = \frac{\sigma_x}{a} F(\sigma_0 \tilde{n}(0, aj))$

<u>Thermal gas :</u>

Boltzman distribution Curve fitting of the recovered cloud shape. Residuals show distorted shape initially. Only noise after recover.

<u>Fermi gas :</u>

Degenerate Fermi gas at $0.2 T_{F}$. Expected distribution with **no** free parameter.

Residuals show that the recovered profile match the expected profile.

Transverse unresolved dimension

Prediction with independent measurement of the temperature and confinement frequencies

