Kinetic formation of trimers in a spinless fermionic chain

L. Gotta¹, L. Mazza¹, P. Simon², G. Roux ¹ Laboratoire de Physique Théorique et Modèles Statistiques, CNRS, Université Paris-Saclay, France ² Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, France

Model and main result

Hamiltonian (spinless fermions on a 1D lattice, $n = \frac{1}{4}$ filling) $\hat{H} = -t \sum_{j} \left(\hat{c}_{j}^{\dagger} \hat{c}_{j+1} + H.c. \right) - t' \sum_{j} \left(\hat{T}_{j}^{\dagger} \hat{T}_{j+1} + H.c. \right)$ with trimer annihilation operator $\hat{T}_{j} = \hat{c}_{j} \hat{c}_{j+1} \hat{c}_{j+2}$

Result

 \rightarrow zero temperature phase diagram of the model:

- $T_{0,\pi}$ phases: Luttinger liquid phases with molecular granularity
- F phase: weak coupling Luttinger liquid phase
- TF C, H phases: coexistence of unbound fermions and trimers

F and $T_{0,\pi}$ phases

1) F phase: $t' \to 0$ $\widehat{H} \to \widehat{H}_F = -t \sum_j \widehat{c}_j^{\dagger} \widehat{c}_{j+1} + H.c.$ \rightarrow standard Luttinger liquid theory holds

- **2)** $T_{0,\pi}$ phase: $t \to 0$ $\widehat{H} \to \hat{H}_T = -t' \sum \hat{T}_j^{\dagger} \hat{T}_{j+1} + H.c.$
- → search for $|\psi_{GS}\rangle$ in the subspace \mathcal{H}_M ^j of fully molecular fermionic configurations:

map to effective fermionic chain map to effective free-fermion Hamiltonian $\blacktriangleright | \bullet \bullet \bullet
angle
ightarrow | 1
angle$ $\hat{H}_T \equiv -t' \sum \hat{f}_j^{\dagger} \hat{f}_{j+1} + H.c.$ $\blacktriangleright |\circ\rangle \rightarrow |0\rangle$ DMRG effective free fermionic chain -5 Dispersion relation: $\epsilon_T(k) = -2t' \cos(k)$ E_{GS} \rightarrow minimum at k=0 for t'>0 (T_0 phase) -10 \rightarrow minimum at $k = \pi$ for t' < 0 (T_{π} phase) -15 0.2 0.6 0.8 0.4 n

Intermediate phase between Fand T_{π} : the TF - C phase

Momentum mismatch >> non-interacting two-fluid description

assume system to be populated by two species of particles:

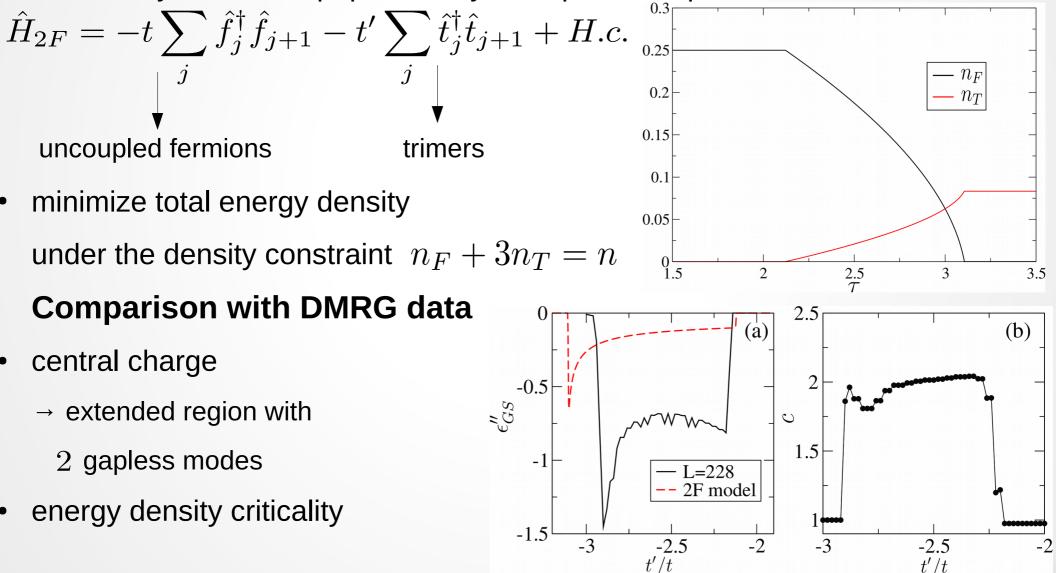
trimers

uncoupled fermions

minimize total energy density under the density constraint $n_F + 3n_T = n$

Comparison with DMRG data

- central charge
 - \rightarrow extended region with
 - 2 gapless modes
- energy density criticality



Intermediate phase between F and T_0 : the TF - H phase Absence of momentum mismatch \rightarrow add interspecies interactions:

$$\hat{H}_{2F} = -t \sum_{j} \hat{f}_{j}^{\dagger} \hat{f}_{j+1} - t' \sum_{j} \hat{t}_{j}^{\dagger} \hat{t}_{j+1} + g \sum_{j} \hat{t}_{j}^{\dagger} \hat{f}_{j-1} \hat{f}_{j} \hat{f}_{j+1} + H.c.$$

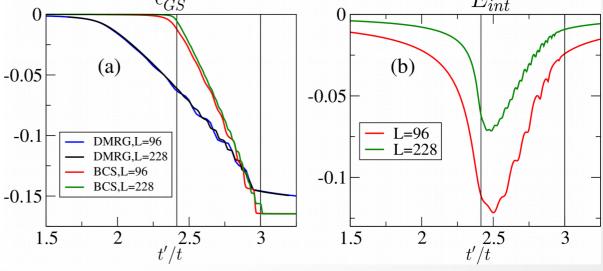
IIIIIUUUUE Vahaliuhai Ahsalz.

$$|\Psi_{3}\rangle = \prod_{\substack{-\frac{k_{F}}{3} < k < \frac{k_{F}}{3}}} \left(\alpha_{k} + \beta_{k} \hat{t}_{k}^{\dagger} \hat{f}_{-k_{F}+\delta_{k}} \hat{f}_{k} \hat{f}_{k_{F}-\delta_{k}} \right) |n_{F}\rangle \otimes |v_{T}\rangle, \, \delta_{k} \sim 2|k|$$

Finite-size features

- → smooth behavior close to first boundary: strong hybridization
- \rightarrow sharp second boundary

Thermodynamic limit



- robustness of finite-size effects both in DMRG data and in variational prediction \rightarrow
- → guess from variational Ansatz: vanishing of hybridization contribution

- recovery of t' < 0 critical behavior

Perspectives on larger multimers

1) Heuristic guess: $\hat{H}_d(t, t') = -t \sum_j \hat{c}_j^{\dagger} \hat{c}_{j+1} - t' \sum_j \hat{c}_j^{\dagger} \left(\prod_{l=1}^{d-1} \hat{n}_{j+l}\right) \hat{c}_{j+d} + H.c.$ → single-particle hopping + hopping term for molecule of size d

• $\hat{c}_j \to e^{i\frac{\pi}{d}j}\hat{c}_j \longrightarrow \hat{H}_d(t,t') \to \hat{H}_d(e^{i\frac{\pi}{d}}t,-t') \longrightarrow \hat{H}_d(t,t') \approx \hat{H}_d(t,-t')$ (emergent symmetry)

2) Energetic signatures on the model with d = 4:

$$\hat{H} = \sum_{j} \left(-t\hat{c}_{j}^{\dagger}\hat{c}_{j+1} + t'\hat{M}_{j}^{\dagger}\hat{M}_{j+1} + H.c. \right) = L(-t\hat{K}_{1} + t'\hat{K}_{4})$$

with $\hat{M}_{j} = \hat{c}_{j}\hat{c}_{j+1}\hat{c}_{j+2}\hat{c}_{j+3}$ \rightarrow quantitative agreement -0.4 between t' > 0 and t' < 0 -0 \rightarrow compare data with -0.4 two-fluid picture

